Inżynieria dużych modeli językowych. Podręcznik projektowania, trenowania i wdrażania LLM
Inżynieria dużych modeli językowych. Podręcznik projektowania, trenowania i wdrażania LLM
 Opis publikacji     
 Wraz ze wzrostem popularności dużych modeli językowych rośnie zapotrzebowanie na specjalistów, którzy potrafią je skutecznie wdrażać w rzeczywistych rozwiązaniach. Inżynieria LLM to szeroki zestaw zadań, wymagający unikalnego połączenia wiedzy z wielu dziedzin. Szczególnie istotne okazuje się tu podejście MLOps, które znacząco zwiększa szanse na sukces w projektach opartych na modelach językowych. Ten obszerny przewodnik pokaże Ci, jak stosować najlepsze praktyki w pracy z LLM. Znajdziesz tu omówienie kluczowych koncepcji, praktyczne techniki i porady ekspertów z zakresu inżynierii danych, dostrajania i oceny modeli,optymalizacji wnioskowania, a także budowania skalowalnych potoków przetwarzania. Krok po kroku prześledzisz, jak zrealizować konkretny produkt, integrując różne aspekty inżynierii LLM i metodologię MLOps. Dowiesz się, jak zbierać i przygotowywać dane,dostrajać modele do specyficznych zastosowań, zwiększać ich wydajność i wdrażać rozwiązania oparte na...
Wraz ze wzrostem popularności dużych modeli językowych rośnie zapotrzebowanie na specjalistów, którzy potrafią je skutecznie wdrażać w rzeczywistych rozwiązaniach. Inżynieria LLM to szeroki zestaw zadań, wymagający unikalnego połączenia wiedzy z wielu dziedzin. Szczególnie istotne okazuje się tu podejście MLOps, które znacząco zwiększa szanse na sukces w projektach opartych na modelach językowych.Ten obszerny przewodnik pokaże Ci, jak stosować najlepsze praktyki w pracy z LLM. Znajdziesz tu omówienie kluczowych koncepcji, praktyczne techniki i porady ekspertów z zakresu inżynierii danych, dostrajania i oceny modeli, optymalizacji wnioskowania, a także budowania skalowalnych potoków przetwarzania. Krok po kroku prześledzisz, jak zrealizować konkretny produkt, integrując różne aspekty inżynierii LLM i metodologię MLOps. Dowiesz się, jak zbierać i przygotowywać dane, dostrajać modele do specyficznych zastosowań, zwiększać ich wydajność i wdrażać rozwiązania oparte na technice RAG.Najciekawsze zagadnienia: niezawodne potoki danych i zarządzanie cyklem trenowania modeli LLM tworzenie i udoskonalanie modeli językowych w praktyce podejście MLOps - koordynacja komponentów i monitorowanie promptów nadzorowane dostrajanie i ewaluacja modeli wykorzystanie narzędzi chmurowych (na przykład AWS) w skalowalnych wdrożeniach praktyczne zastosowanie techniki retrieval-augmented generation (RAG)Działa? To za mało. Musi działać dobrze!
 Informacje     
 Wydawnictwo Helion wywodzi się z grupy wydawniczej o tożsamej nazwie, powstałej w 1991 roku w Gliwicach. Od samego początku swojej... więcej→